<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=617357065128553&amp;ev=PageView&amp;noscript=1">

VK-701 LEAP5™

Решение перспективных задач сокращения выбросов SO2 с помощью нового сернокислотного катализатора Топсе VK-701 LEAP5™

Введение
Ванадиевые катализаторы с цезиевым промотором, появившиеся во второй половине 80-х гг. прошлого века, показали себя весьма эффективным средством для сокращения выбросов SO2 сернокислотных установок за счёт своей высокой активности в области низких температур.

В 1996 г. компания Топсе предложила на рынок катализатор VK69, разработанный для работы на последних полках аппаратов ДК/ДА [1, 2]. Катализатор этой марки значительно превосходит по активности как катализаторы, промотированные соединениями калия, так и цезиевые катализаторы первых версий. При использовании катализатора VK69 на последней полке существующего аппарата ДК/ДА, работающего по схеме 3+1, можно добиться двукратного снижения выбросов SO2, либо повышения производительности на 15-20% без роста выбросов SO2. С помощью катализатора VK69 стало возможным обеспечить концентрацию SO2 в выхлопе менее 100 ppm на аппаратах ДК/ДА по схеме 3+1.

Тем не менее, продолжающееся ужесточение нормативных требований ставит перед сернокислотной промышленностью новые задачи по снижению выбросов SO2, так что целевая конверсия составляет порядка 99.8–99.95% (0.3-1.3 кг SO2/т H2SO4) в случае аппаратов ДК/ДА или – для аппаратов одинарного контактирования – выше 98–99% (6.5–13 кг SO2/т H2SO4). Для многих существующих производств такие предельные нормативы оказываются трудноразрешимой задачей в свете их нынешней либо перспективной производительности.

Отвечая на новые требования рынка, компания Топсе разработала совершенно новый катализатор, получивший наименование VK-701 LEAP5™, главной задачей которого должно стать низкотемпературное превращение крепких газов, имеющих определённую степень предварительной конверсии. Новый катализатор Топсе поднимает планку промышленно достижимой конверсии SO2 на аппаратах как одинарного, так и двойного контактирования.

Теоретические основы

Промышленные сернокислотные катализаторы в качестве ключевого компонента используют оксиды ванадия, а также сульфаты щелочных элементов в качестве промотора, которые нанесены на инертный кремнезёмный пористый носитель. Такие композиции являются катализаторами типа ЖФН (жидкая фаза на носителе), окисление SO2 на которых протекает как гомогенная реакция в плёнке расплава, покрывающей поверхность пор материала носителя.

Щелочные промоторы в составе катализатора – это, прежде всего, соединения калия и натрия, но некоторые катализаторы используют и цезиевые промоторы, потому что соединения цезия обеспечивают превосходную активность в области низких температур. К настоящему времени опубликованы данные многочисленных исследований, касающихся координационной химии активного расплава ванадиевого катализатора и механизма реакции, но тем не менее детальный механизм всё ещё изучен не до конца. С другой стороны, имеются убедительные доводы в пользу того, что лишь ванадий со степенью окисления V5+ активен в каталитическом цикле превращения, участвуя в нём в виде димерного оксо-сульфатного комплекса [3].

В стационарном состоянии катализатор характеризуется таким распределением комплексов ванадия в активном расплаве, которое находится в состоянии равновесия с газовой фазой. Вследствие этого расплав содержит в определённых количествах ванадий в степенях окисления V5+, V4+ и V3+. Однако соединения V4+ и V3+ не проявляют каталитической активности. При этом глубина восстановления ванадия будет расти при низких температурах и при высоком парциальном давлении SO2. Кроме того важно отметить, что некоторые соединения V4+ при температуре ниже 460 °C будут кристаллизоваться, что при дальнейшем понижении температуры может привести к постепенному снижению содержания комплексов V5+ в активном расплаве. В конечном результате вследствие такого восстановления и частичного перехода ванадия в твёрдую фазу активность стандартного ванадиевого катализатора, промотированного калием, при определённой минимальной температуре (порядка 360 °C) падает почти до нуля.

Скорость каталитической химической реакции может лимитироваться скоростью внешнего массо- и теплопереноса к поверхности гранул катализатора, скоростью внутреннего массопереноса в пористой структуре, либо собственно скоростью химической реакции. В случае сернокислотного катализатора, работающего при низкой температуре в среде крепкого газа, самой медленной стадией окажется именно скорость химического превращения. Скорость реакции будет зависеть от химической природы активного расплава, но в значительной степени также и от характера распределения активного расплава по носителю и от скорости растворения и транспорта газа в активном расплаве. В стационарных условиях активный плав будет находиться в  равновесии с окружающей газовой средой. При этом распределение активного расплава на носителе будет определяться свойствами поверхности диатомитового носителя на наноуровне, такими как смачиваемость и сила поверхностного натяжения. Для промышленных сернокислотных катализаторов заполнение крупных пор объёмными слияниями каталитического расплава, в которых транспорт газа оказывается значительно ограничен, чревато ощутимой потерей активности.

Компания Хальдор Топсе А/О разработала совершенно новый катализатор, получивший наименование VK-701, который основан на абсолютно оригинальной технологии, названной LEAP5™, при использовании которой удаётся преодолеть названные ограничения и обеспечить необычайно высокую активность катализатора. Для того, чтобы усовершенствовать катализатор, в частности, обеспечив очень высокое содержание V5+, компанией Топсе были предприняты следующие шаги:

  • Изменение структурной морфологии и поверхностных характеристик носителя.
  • Оптимизация активной композиции для работы в среде газа с высоким содержанием SO3.

На первом этапе идеи по созданию нового катализатора отрабатывались в лабораторных реакторах, после чего, основываясь на полученных данных, подтвердивших высокую активность новой композиции, компания Топсе продолжила разработки уже с использованием пилотных установок для изготовления и тестирования катализатора. Выполненная широкая программа исследований вновь подтвердила превосходную активность и стабильность продукта, который при этом демонстрировал полностью удовлетворительные показатели механической прочности и перепада давления. В компании Топсе была установлена и отлажена новая уникальная производственная линия для производства катализатора по нашей новой технологии LEAP5™. Катализатор был запущен в полномасштабное производство, и для полученного продукта, катализатора VK-701, все целевые рабочие параметры были уверенно подтверждены.

Свойства и рабочие показатели катализатора VK-701 LEAP5™

Новый катализатор марки VK-701 LEAP5™ разработан для работы при низкой температуре в среде крепких газов, имеющих определённую степень предварительной конверсии. Фотография этого катализатора приведена на Рис. 2, а основные характеристики катализатора следующие:

Марка катализатора: VK-701 LEAP5™
Размер, форма гранул: 12 мм Цветок
Область применения: Нижние полки аппаратов одинарного контактирования; 3 полка аппаратов ДК/ДА, работающих по схеме 3+1 и 3+2
Рабочая температура: 400-500 °C
Температура зажигания: 310 °C
Термостабильность: 650 °C

Выбор размера гранул катализатора – это всегда поиск компромисса между активностью и перепадом давления. При работе на крепких газах с определённой степенью предварительной конверсии внутренняя диффузия в порах катализатора оказывает не столь сильное влияние на протекание реакции, поэтому для VK-701 была выбрана наша стандартная форма, 12 мм Цветок, который обеспечивает меньший перепад давления по сравнению с 9 мм Цветком. Перепад давления по такому катализатору в расчёте на единицу высоты слоя равен перепаду давления, который имеют хорошо опробованные катализаторы Топсе с формой 12 мм Цветка (VK38, VK48 и VK59).Учитывая, что композиция катализатора VK-701 имеет в своей основе хорошо известные материалы, применяемые в производстве сернокислотных катализаторов, после завершения срока эксплуатации этого катализатора не потребуется каких-либо специальных мер при его утилизации.

Активность катализатора VK-701 в зависимости от рабочей температуры при работе на газе исходного состава 10% SO2, 10% O2 и высокой степенью предварительной конверсии – показана в сопоставлении с традиционными катализаторами Топсе VK48 и VK59. В сравнении с стандартным калий-промотированным катализатором VK48, катализатор марки VK59 демонстрирует существенно более высокую активность в области температур ниже 430 °C благодаря влиянию добавок цезия. Однако активность нового катализатора VK-701 превосходит уровень VK59 примерно в два раза во всём интервале рабочих температур.

Высокая концентрация V5+

Главным скачком вперёд в новой технологии LEAP5™ Топсе стало формирование в активном расплаве катализатора высокой концентрации ванадия со степенью окисления V5+. VK-701 производится с достаточно высоким общим содержанием ванадия, однако оно всё же не намного выше, чем у других промышленных катализаторов. При этом в процессе промышленной эксплуатации активный расплав катализатора адаптируется к условиям рабочего газа. Для того, чтобы более подробно исследовать этот процесс перехода к равновесному состоянию, в лаборатории Топсе были проведены эксперименты по измерению концентрации ванадия в различных степенях окисления в зависимости от температуры. Образцы различных катализаторов измельчались, после чего для каждого просеиванием отбиралась фракция с размером частиц 1-2 мм. Такая проба катализатора загружалась в изотермический стеклянный реактор, и на катализатор подавался поток газа, содержащий 10% SO2 и 10% O2 с предварительной конверсией 93%. Спустя сутки катализатор резко охлаждался до комнатной температуры в азоте, после чего анализировался для определения концентрации в нём V5+, V4+ и V3+ методом трёхстадийного окислительно-восстановительного титрования.

Результаты анализа показали, что в условиях проводившихся испытаний ванадий в катализаторе присутствовал во всех этих трёх степенях окисления, хотя содержание V3+ было крайне низким. Стандартный катализатор VK48 при 380-440 °C содержит в определённом количестве активный V5+, однако бόльшая часть ванадия здесь в действительности оказывается в неактивных состояниях V4+ и V3+. Цезийсодержащий катализатор VK59 обнаружил меньшее содержание форм восстановленного ванадия, однако имел примерно ту же концентрацию V5+, что и в VK48. При 380-400 °C содержание V5+ во всех трёх катализаторах оказалось ещё более низким вследствие восстановления V5+ диоксидом серы до V3+ и V4+. Для нового катализатора VK-701 LEAP5™ ситуация складывается совершенно по другому. Этот катализатор имеет существенно более высокую концентрацию ванадия в активной форме V5+, доля которого при 400-440 °C составляет приблизительно 70% от всего содержащегося ванадия. Новый катализатор VK-701 имеет в два-три раза более высокую концентрацию активного ванадия, чем промышленные катализаторы, представленные сегодня на рынке.

Примеры промышленного использования катализатора VK-701 LEAP5™

Первое промышленное внедрение катализатора VK-701 состоялось в одной из сернокислотных установок на Западе, работающей на сжигании серы по технологии одинарного контактирования. Контактный аппарат имеет пять катализаторных полок с непрямым охлаждением между полками 1 и 2, охлаждением прямым добавлением воздуха после полок 2 и 3. Между полками 4 и 5 газ не охлаждается. В исходном газе, подаваемом в контактный аппарат, содержится 8,8% SO2 и 12% O2.

Во время ремонта в 2010 г. катализаторы VK59 и VK48 на последних полках были заменены в равных объёмах катализатором VK-701 для сокращения выбросов SO2 и повышения производительности. До применения катализатора VK-701 установка работала с производительностью 245 т/сутки при входной температуре 4 полки порядка 420 °C при общей конверсии 98,77%, что соответствовало содержанию SO2 в выхлопе на уровне 1000 ppm.

После пуска установки был выполнен тестовый пробег, в ходе которого были проведены замеры содержания SO2 и O2, а также температуры на входе и выходе полок. По данным анализа состава газа и измерений температуры, выполненных в нескольких точках, было выявлено неполное смешивание газа с охлаждающим воздухом на входе 4 полки, что оказывало значительное влияние на итоговые показатели работы. Однако аналогичные измерения, выполненные для пятой полки, показали, что состав газа на её входе был более однородным.

После загрузки 26,4 м3 катализатора VK-701 на последние полки аппарата и снижения входной температуры до 404 °C, содержание SO2 в выхлопе удалось снизить примерно до 720 ppm при одновременном повышении производительности до 266 т/сутки. Таким образом, путем замены катализаторов VK59 и VK48 на новый катализатор марки VK-701 стало возможным сократить выбросы SO2 на 20% (из расчета кг SO2 на т H2SO4), даже при работе с более высокой (на 9%) производительностью. Установленная в ходе тестового пробега активность катализатора VK-701 в два раза превзошла уровень активностии свежего катализатора VK59, несмотря на выявленные проблемы со смешением газа на входе 4 полки.

Преимущества

Повышение доли ванадия в состоянии окисления V5+ обеспечивает катализатору VK-701 LEAP5™ преимущество в активности по сравнению с катализаторами VK48 и VK59 во всём интервале рабочих температур. Катализатор VK-701 LEAP5™ производится с традиционной для компании Топсе формой гранул 12 мм Цветка для обеспечения низкого перепада давления.

Заключение

В ответ на растущие запросы сернокислотной промышленности в отношении сокращения выбросов SO2 компания Топсе разработала новый сернокислотный катализатор, который получил наименование VK-701 LEAP5™. Этот катализатор основан на абсолютно оригинальной технологии LEAP5™ Хальдор Топсе А/О, позволяющей обойти ограничения по массопереносу в фазе активного расплава, которые свойственны современным промышленным катализаторам. Новый катализатор VK-701 имеет в два–три раза более высокую концентрацию ванадия в активном состоянии V5+ по сравнению с другими промышленными катализаторами, и поэтому обладает исключительно высокой активностью в области низких температур в среде крепкого газа с определённой степенью предварительной конверсии.

Для четырёхслойного аппарата одинарного контактирования при использовании катализатора VK-701 на последней полке будет обеспечено 20–30% сокращение выбросов SO2 по сравнению с загрузкой цезийсодержащего катализатора, либо сокращение выбросов на 30–40% по сравнению с загрузкой стандартного катализатора с калиевым промотором. Для большинства контактных аппаратов ДК/ДА, сейчас работающих с максимальной эффективностью, можно добиться дальнейшего снижения выбросов SO2 примерно на 40% за счёт использования катализатора VK-701 на третьей полке, так что содержание SO2 в выхлопе в зависимости от рабочего газа и схемы установки можно будет понизить вплоть до 50 ppm. Опыт эксплуатации загрузки VK-701 LEAP5™ в промышленном контактном аппарате одинарного контактирования, работающем на газе от сжигания серы, подтверждает необычайно высокую активность нового катализатора.

Объединение в одной загрузке высокой активности катализаторов VK-701 и VK69 предоставляет возможность проектировать новые контактные аппараты ДК/ДА по схеме 3+1, которые будут иметь содержание SO2 в выхлопе не выше 20-50 ppm (удельные выбросы 0,1-0,25 кг SO2 /т H2SO4). Для существующих контактных аппаратов возможность значительного сокращения выбросов SO2 при использовании катализатора VK-701 становится привлекательной альтернативой капиталоёмким проектам использования промывки растворами щелочей или пероксида водорода. Даже для установок, уже использующих промывку отходящих газов, внедрение нового катализатора VK-701 может стать экономически целесообразным с точки зрения снижения затрат на реагент, расходуемый для доочистки.

Литература

1. Jensen-Holm, H. (1996). New Catalyst Options for Improved Performance of sulfuric Acid Plants. sulfur ’96, pp 235-49, British sulfur Publishing, London.
2. Jensen-Holm, H. and Hansen, L. (1997). Demonstrated Performance Improvements in sulfuric Acid Plants Using VK-69 Catalyst. sulfur ’97, pp 193-206, British sulfur Publishing, London.
3. Lapina, O.B., Bal’zhinimaev, B.S., Boghosian, S., Eriksen, K. M. and Fehrmann, R. (1999). Catalysis Today, 51, 469-479. 
 


 


 

используется в процессе

Серная кислота

похожие видео


Связанные загрузки


Паспорт безопасности

запросить данные о безопасности