Surface reactions: Informing catalyst design through fundamental studies

Atomistic models

Focus on improving selectivity for selective oxidation

IMASC MISSION:
To develop a fundamental understanding of catalyst design for sustainable conversion and production of platform chemicals

Porous Catalysts: 10^{-9} torr-1 atm
The need for efficient catalysts for chemical production

Growing role of chemical production in industrial energy demand

Goal: Develop design principles for increasing selectivity and lowering operating temperatures to reduce energy expenditure.

“The Outlook for Energy: A View to 2040” (ExxonMobil, 2014)
IMASC Research is highly integrated and broad

Focus Area 1
Tim Kaxiras & Robert Madix, Leads
Reaction Mechanisms and Modeling of Active Sites
Other PIs:
 - J. Biener, Friend, Hoffman
 - Tkatchenko, Sykes

TPRS, XPS, STM, DFT

Focus Area 2
Maria Flytzani-Stephanopoulos. Lead
Catalytic performance under realistic reaction conditions
Other PIs:
 - J. Biener, Friend, Madix, Tao
 - Collaborators:
 - Succi, Falcucci, Fushimi

TAP, Reactors, TPR, flow modeling

Focus Area 3
Juergen Biener, Lead
Structure, composition and electronic properties
Other PIs:
 - J. Biener, Flytzani-Stephanopoulos, Friend, Kaxiras, Salmeron, Tao

eTEM, SEM, AP-XPS, XAS

TPRS, XPS, STM, DFT
Translating understanding of selective oxidation on Au single crystals to nanoporous Au catalysts

Identification of Reactivity

Fundamentals From Model Studies: Au(111)

UHV

Adding Materials Complexity: npAu (AgAu alloy)

Computing: O$_2$ dissociation, surface interactions, reactant flow

Mapping to Catalytic Conditions: continuous flow, 1 atm.

Feedback to Model Studies: new alloy compositions, mechanistic studies

Optimization of Geometry: shells and foils

1 atm
Selective oxidation of alcohols by O adsorbed on Au(111)

O Adsorbed on metallic Au promotes selective oxidation processes—Acid/base paradigm

Local bonding of O

DFT & Vibrational Spectroscopy
Propene oxidation on Au(111)-O

O insertion to allylic C-H bond: Path to acrolein & acrylate

Allyloxy

Allylic C-H scission: Path to combustion

Allyl species

Guiding principles for scaling from UHV single crystal studies to reactor conditions

- Dominant reaction pathways must translate from Θ_1, T_1 to P_2, T_2; reactions that govern reactions in model systems must also govern them under reactor conditions.
- Local structures of models should reflect working catalyst; ideally, reactions structure insensitive.

Adsorbed O is \textit{required} for bond activation on metallic Au

DFT: Adsorbed O required for methoxy formation

- Transfer of H to Au is unfavorable (+1.33 eV) and has a high barrier (1.58 eV)

Transitions states comparing H transfer to Au vs. to O

DFT: No C-H bond breaking on clean Au

<table>
<thead>
<tr>
<th>Surface Reaction</th>
<th>Barrier Height (eV)</th>
<th>ΔE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$O + O → H$_2$C=O + OH</td>
<td>0.49</td>
<td>-0.98</td>
</tr>
<tr>
<td>CH$_3$O + OH → H$_2$C=O + H$_2$O</td>
<td>0.63</td>
<td>-1.23</td>
</tr>
<tr>
<td>2 CH$_3$O → H$_2$C=O + CH$_3$OH</td>
<td>0.66</td>
<td>-1.20</td>
</tr>
<tr>
<td>CH$_3$O → H$_2$C=O + H</td>
<td>0.64</td>
<td>+0.15</td>
</tr>
</tbody>
</table>

- All barriers are similar
- Transfer of H to Au unfavorable

O in 3-fold site; VASP, GGA-PW91, 3 or 4 Au layers

DFT: Attack of H$_2$C=O by CH$_3$O is spontaneous—no barrier

Xu, Haubrich, Baker, Kaxiras, Friend, JPCC (2011) 115 3703-3708
Key factors in oxidative coupling of methanol

- Au itself is unreactive—O_{ads} is active site
- Loss of H from CH$_3$O determines rate—adsorbed O, OH and CH$_3$O all promote formaldehyde formation
- Ordered O phase leads to over-oxidation; combustion
- Weak interaction of key reactants with surface facilitates coupling—unique to Au

Catalyst design: Activation of O$_2$ is required
Demonstration of reaction principles for complex systems: coupling of dissimilar alcohols on O/Au

\[C_2H_5OH \quad + \quad CH_3OH \]

Ester formation:

- \(CH_3O \rightarrow H_2C=O + RO \)
- \(C_2H_5O \rightarrow (CH_3)(H)C=O + RO \)
Selectivity for coupling of methanol and ethanol on O/Au(111) (0.2 ML O)

Pre-equilibrium establishes relative concentrations of alkoxides

Controlling selectivity in complex reaction environments: Competitive binding

2 CH₃OH → O
Gold → CH₃ O CH₃ O
Gold → H₂O
Oads determine RO_ads coverage

2 C₂H₅OH + CH₃ O CH₃ Kₑq = 5 C₂H₅ O C₂H₅
Gold ↔ C₂H₅ O C₂H₅ + 2 CH₃OH
Gold

Competitive binding determines relative concentrations in complex environments
Gas phase acidity hierarchy as a guide of binding

<table>
<thead>
<tr>
<th>Acid</th>
<th>Conjugate Base (B)</th>
<th>ΔH_{acid} (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-butanol</td>
<td>1-butoxy</td>
<td>375.2</td>
</tr>
<tr>
<td>isopropanol</td>
<td>isopropoxy</td>
<td>375.7</td>
</tr>
<tr>
<td>1-propanol</td>
<td>1-propoxy</td>
<td>376.2</td>
</tr>
<tr>
<td>ethanol</td>
<td>ethoxy</td>
<td>378.0</td>
</tr>
<tr>
<td>methanol</td>
<td>methoxy</td>
<td>381.7</td>
</tr>
<tr>
<td>dimethylamine</td>
<td>dimethylamide</td>
<td>395.5</td>
</tr>
</tbody>
</table>

\[
\text{BH(gas)} \rightarrow \text{B}^-(\text{gas}) + \text{H}^+(\text{gas})
\]

Higher Gas Phase Acidity (More Stable B_{ads})

Lower Gas Phase Acidity
van der Waal’s Interactions are important for relative binding of alkoxys on Au

Selectivity depends on weak interactions

<table>
<thead>
<tr>
<th>Adsorbate</th>
<th>E_b (eV) PBE</th>
<th>E_b (eV) PBE+vdW</th>
<th>Difference due to vdW (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$O</td>
<td>1.15</td>
<td>1.29</td>
<td>0.14</td>
</tr>
<tr>
<td>CF$_3$CH$_2$O</td>
<td>1.11</td>
<td>1.41</td>
<td>0.30</td>
</tr>
<tr>
<td>CH$_3$CH$_2$O</td>
<td>1.38</td>
<td>1.64</td>
<td>0.28</td>
</tr>
<tr>
<td>1-CH$_3$(CH$_2$)$_3$O</td>
<td>1.33</td>
<td>1.80</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Correlation with gas phase acidity is due to polarizability of species

, Rodriguez-Reyes, Siler, Liu, Tkatchenko, Friend, Madix JACS (2014)
Generalization: Guiding principle for designing new reactions

Electron distribution leads to reaction of negatively polarized species with positively charged one

Prediction: Any molecule with electron-deficient carbon should react with OCH$_3$ on O/Au—e.g. CO or NR$_2$
Surface Chemistry as a platform for reaction *discovery*—new processes

Methanol carbonylation

Xu, Madix, Friend, JACS(2011);
dx.doi.org/10.1021/ja207389z

DOI: 10.1002/anie.200905642.
Excess of Methanol required to drive amide formation due to competition of CH₃O and (CH₃)₂N

Translating understanding of selective oxidation on Au single crystals to nanoporous Au catalysts

Identification of Reactivity

Fundamentals
From Model Studies: Au(111)

UHV

Adding Materials Complexity: npAu (AgAu alloy)

Computation:
O₂ dissociation
surface interactions
reactant flow

Mapping to Catalytic Conditions:
continuous flow, 1 atm.

Optimization of Geometry:
shells and foils

Feedback to Model Studies:
new alloy compositions
mechanistic studies

1 atm
Design principle: Activate O_2 for reaction on Au under catalytic conditions

Example: Formation of O_{ads} on Au for selective oxidation

- Minority active component creates reactive intermediates; selective reaction occurs on less reactive majority component after migration

$\text{npAu is a dilute Ag/Au alloy (~3% Ag)}$
Unsupported npAg$_{0.03}$Au$_{0.97}$ Catalysts are prepared with a variety of architectures: All are active for alcohol coupling.

Ingots used in this work were provided by Monika Biener and Juergen Biener at LLNL.
Dilute Ag/Au alloys dissociate O₂—even in UHV

Nanoporous Ag$_{0.03}$Au$_{0.97}$ Ingots/UHV

O_2 does not dissociate unless npAu is first cleaned using ozone doses.

Isotopic labeling establishes presence of atomic O

Transient Studies using a TAP Reactor:

- O_2 activation

- Single pulse \rightarrow Rate constants
- Simultaneous pulsing \rightarrow Reaction activity/selectivity
- Sequential/Alternate pulsing \rightarrow Probe lifetime/transformation of adsorbed intermediate species (e.g., O_{ad})

- Continuous flow valve
- Pulse valve
- Microreactor
- Vacuum chamber $< 10^{-8}$ Torr

- Time scale:
 - 0.01 ~ 0.1 ms
 - ~10^{15} molecules/pulse
 - 0.5 ~ 10 s

- Diagram showing the experimental setup and pulse timing.
\(\text{npAg}_{0.03}\text{Au}_{0.97} \) Catalyst Material Fundamentally Changed by Activation Procedure Derived From Fundamental Studies

- Literature method for activating npAu ingots is inconsistent and irreproducible.
- Ozone pre-treatment reproducibly activates npAu catalysts (ingots, foils, and shells) for the sustained oxidation of alcohols.

Procedure:

1. Pre-treatment of npAu in flowing ozone at 150 °C for 1 hour, followed by cooling to room temperature in He.
2. Heating to 150 °C in a stream of 10% methanol and 20% \(\text{O}_2 \) in He.

2nd Step of Activation of npAg$_{0.03}$Au$_{0.97}$ Catalysts occurs under reaction conditions

Conditions: 10% methanol and 20% O$_2$ in He, 150°C, 50 mL/min, 10 mg npAu shells

- CO$_2$ is only formed during the initial activation period following ozone treatment.
- Previously active catalyst materials reactivate after exposure to air for four months without additional ozone treatment.

Activity of npAg$_{0.03}$Au$_{0.97}$ Catalysts Materials is Stable Over Time

- Stable conversion of methanol has been observed for one month after an initial 24 hour stabilization period.

Conditions: 10% methanol and 20% O$_2$ in He, 150°C, 50 mL/min, 50 mg npAu shell catalyst
New procedure activates all npAg$_{0.03}$Au$_{0.97}$ catalysts architectures

<table>
<thead>
<tr>
<th>Catalyst material</th>
<th>Rate of conversion of methanol</th>
<th>Selectivity to methyl formate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingots</td>
<td>0.017 mmol s$^{-1}$ g$^{-1}$</td>
<td>100%</td>
</tr>
<tr>
<td>Foils</td>
<td>0.091 mmol s$^{-1}$ g$^{-1}$</td>
<td>100%</td>
</tr>
<tr>
<td>Shells</td>
<td>0.083 mmol s$^{-1}$ g$^{-1}$</td>
<td>100%</td>
</tr>
</tbody>
</table>

Conditions: 10% methanol and 20% O$_2$ in He, 150°C, 50 mL/min

- Higher rates of methanol conversion for the foils and shells indicate that these materials overcome some of the mass transport limitations of the ingots.
npAg$_{0.03}$Au$_{0.97}$ Catalysts selectively couple higher alcohols to yield esters

- Aldehyde (acetaldehyde or butyraldehyde) is the only other product.
- No CO$_2$ detected.

<table>
<thead>
<tr>
<th>Catalyst material</th>
<th>Ethanol self-coupling selectivity to ester*</th>
<th>1-Butanol self-coupling selectivity to ester*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingots</td>
<td>36.1%</td>
<td>20.6%</td>
</tr>
<tr>
<td>Foils</td>
<td>22.1%</td>
<td>11.9%</td>
</tr>
<tr>
<td>Shells</td>
<td>20.2%</td>
<td>16.4%</td>
</tr>
</tbody>
</table>

Conditions: 5% alcohol and 20% O$_2$ in He, 150°C, 50 mL/min
Van der Waal’s interactions are important in determining catalytic performance of npAg$_{0.03}$Au$_{0.97}$ Catalysts

Competition for binding sites under SS conditions mirrors that on O/Au(111)—van der Waal’s interactions play an important role

Solution phase amide synthesis from (CH₃)₂NH + ROH mirrors UHV results: Weak interactions important

Key points:
• O is required for reaction
• Competitive binding predicted from displacement experiments in UHV reflect selectivity in solution

Distinct from npAu activated by previous methods, ozone pre-treated npAu catalysts:

- Activate reproducibly and recover their activity after being exposed to air for four months, without requiring a second ozone treatment.

- Operate stably at or above 150 °C, and are inactive in the 20-80 °C temperature range previously reported.

- Do not catalyze the oxidation of CO to CO$_2$ at 150 °C or at lower temperatures.

- Catalyze the self-coupling of 1-butanol to form butyl butyrate and stably catalyze the self-coupling of ethanol to yield ethyl acetate.

Key messages: Guided Catalyst Design

- Mechanism used to *predict* new reactions
- Van der Waal’s interactions partly determine competitive binding and reactivity
- Minority component (Ag) activates O₂
- Catalyst material is dynamic, yet robust

Next Challenge: Generalization to other reaction and materials systems
Thanks to great collaborators and to DOE

- David Bell
- Juergen Biener
- Monika Biener
- Tim Kaxirias
- Michelle Personick
- Juan Carlos Rodriguez-Reyes
- Cassie Siler
- Eric Stack
- Kara Stowers
- Alex Tkatchenko
- LuCun Wang
- Bingjun Xu
- Branko Zugic

This work was supported by IMASC, an Energy Frontier Research Center, funded by the U.S. Dept. of Energy, Office of Science and by the DOE Catalysis Science Program, Basic Energy sciences