Catalytic Reforming for Aromatics Production

Topsoe Catalysis Forum
Munkerupgaard, Denmark August 27-28, 2015

Greg Marshall
GAM Engineering LLC
Role of Catalytic Reforming

- **MAIN PROCESS FOR UPGRADING LOW OCTANE NAPHTHAS TO HIGH OCTANE GASOLINE BLENDING COMPONENTS OR CHEMICALS INTERMEDIATES (BENZENE/TOLUENE/XYLENES)**

- **NUMBER OF IMPORTANT BYPRODUCTS**
 - H$_2$ FOR HYDROTREATING
 - C$_1$-C$_2$ FOR FUEL GAS
 - C$_3$-C$_4$ FOR LPG
 - C$_4^+$ TO MOGAS OR ALKYLATION (IC$_4^+$)
 - AROMATICS FOR CHEMICALS

- **MODERN CATALYTIC REFORMING DEVELOPED IN THE EARLY 1950'S WITH DEMAND FOR INCREASED GASOLINE OCTANE**

- **SIGNIFICANT IMPROVEMENTS OVER THERMAL REFORMING**
 - HIGHER OCTANE AND YIELD
 - BETTER QUALITY (SULPHUR, DIOLEFINS)
Process Description

- Naphtha feedstock
 - Typical C 6 to C 10
 - Feed tailored to the desired product C 6 to C 8 is better
 - Fractionated to remove heavy ends
 - Hydrotreated to remove
 - Sulfur
 - Nitrogen
 - Olefins
 - Oxygenates
 - Metals
 - Paraffins, naphthenes and aromatics
 - Combined with hydrogen rich recycle gas
 - Vaporized in feed effluent heat exchangers
 - Necessary to be all vapor before heater
Process Description Continued

• Feed and recycle gas
 • Heated to reaction temperature in furnace
 • Introduced to first reactor
 • Desired reactions are endothermic
 • Strong endotherm in first reactor reaching a reaction quench temperature
 • Followed by 2 to 4 additional reactor heater combinations
 • Entire reaction train in vapor phase
Simplified Semi-Regen Reformer
Cyclic Reforming

HYDROFINED NAPHTHA FEED

A - S

REACTORS

UPPER REACTION HEADER
UPPER REGEN HEADER

FIRST REHEAT FURNACE
SECOND REHEAT FURNACE
THIRD REHEAT FURNACE

LOWER REACTION HEADER
LOWER REGEN HEADER

PREHEAT FURNACE

TO/FROM REGEN CIRCUIT

TO EFFLUENT EXCHANGERS, SEPARATOR DRUM, ETC.
UOP CCR Reformer

Regenerator

Regenerated Catalyst

Spent Catalyst

Cat Flow

Hydrogen

Hydrotreated Naphtha Charge

Start

#1

#2

#3

GAM Engineering LLC
Unit Revamps

• Most done to stretch existing unit capacity
 • Heater preplacement due to creep
• Lowering pressure to increase yields
 • Changing feed effluent exchangers
 • Purge from compressor discharge
• Switching from mono metallic catalyst to bi metallic catalyst
Catalyst

• Dual Function
 • Acid: Alumina with chloride
 • Metal: Pt with or without promoter metals (Re, Ir, Sn)
 • Re provides coke stability and additional run length Sulfiding required
 • Ir additional activity Sulfiding required
 • Sn promotes yield at low coke levels no sulfiding required

• Supported on gamma alumina
 • High surface area
 • 200 m²/gm fresh catalyst
 • 120 m²/gm aged catalyst
 • Surface area decline with exposure to high temperature and steam

• Heart of reforming process
 • Promotes “good reactions”
Products

• **SAME HYDROCARBON TYPES AS FEED BUT PRIMARILY AROMATIC AND C7- PARAFFINS**

• **AROMATICS ARE THE PRINCIPAL SOURCE OF HIGH OCTANE**
 • NAPHTHENES AND C8+ PARAFFINS ESSENTIALLY ABSENT AT 98+ RON
 • LIGHTER PARAFFINS ARE MORE BRANCHED THAN IN FEED BUT ARE STILL PREDOMINATELY SINGLE METHYL SUBSTITUTED WITH LOW RON
Unit Optimization

• Low pressure and low H2 / HC ratio favor
 • Higher liquid yields
 • Higher aromatic yields
 • Coke

• High temperatures favor
 • Dehydrogenation
 • Dehydrocyclization
 • Hydrocracking
 • Coke
Feed Selection

• High yield- Easy feed
 • Naphthenic feeds
 • Example Sleipner Condensate
 • ~70% naphthenes
 • Require large reheat furnaces- high endotherms
 • High hydrogen and aromatics yields

• Lower Yield – More difficult feed
 • Paraffinic feeds
 • Example Lt Arab Naphtha
 • ~ 70% paraffins
 • Reactor endotherms decreased
 • Higher Lt ends yields
Mogas Vs Aromatics Operation

• Mogas operation
 • Targets C5+ RON needed for gasoline blending
 • Target can and will change based on gasoline grade blended
 • Typical RON 92 to 95 with short excursions to 98 as needed

• Aromatics operation
 • Target maximum aromatics concentration in reformate
 • Typical RON of reformate > 98 with some units operating up to 102
 • Feed and unit type dependent
 • Semi regen units require frequent regeneration
 • Cyclic and CCR better suited for aromatics operation
 • Minimize C9 non aromatics
Yield versus Severity

Typical yield with a feed Watson K of 11.8
Expected Yields

Reformer Types and Yields

- Cyclic
- Semi Regen
- Semi Regen 2
- CCR

Yield

Months

Reflection Types and Yields
Aromatics Recovery

• Remove light ends
 • Depentanize via distillation

• Remove heavy ends
 • C8- overhead in distillation tower
 • Can separate A8 from A9 by distillation
 • Cannot separate A8 from P9 by distillation
 • Azeotrope formed
 • Mogas and / or aromatic solvents

• C6 to C8 stream sent to solvent extraction
 • Raffinate to mogas or specialty solvents
BTX Recovery

• Clay Treater

• Fractionation
 • BZ product O/H
 • Tower bottoms to another fractionator
 • Toluene product overhead
 • Tower bottoms to another fractionator
 • Tower overhead concentrated Para Xylene
 • Sent to Parex for production of pure Px
 • Parex reject stream sent to Para Xylene Isomerazation
 • Tower bottoms sent to another fractionator
 • Produces Ortho Xylene from tower overhead
 • Tower bottoms sent to mogas
Additional Px

- Product Toluene is divided between sales and STDP
 - Flow rates determined by economics
 - STDP Feeds Toluene
 - Major product are
 - Benzene
 - Para xylene