FUNDAMENTAL UNDERSTANDING OF SELECTIVE HYDROGENATIONS

Núria López
Hydrogenations: at the basis of catalysis

<table>
<thead>
<tr>
<th>Compound</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>alkene, R₂C=CR'₂</td>
<td>alkane, R₂CHCHR'₂</td>
</tr>
<tr>
<td>alkyne, RCCR</td>
<td>alkene, cis-RHC=CHR'</td>
</tr>
<tr>
<td>aldehyde, RCHO</td>
<td>primary alcohol, RCH₂OH</td>
</tr>
<tr>
<td>ketone, R₂CO</td>
<td>secondary alcohol, R₂CHOH</td>
</tr>
<tr>
<td>ester, RCO₂R'</td>
<td>two alcohols, RCH₂OH, R'OH</td>
</tr>
<tr>
<td>imine, RR'CNR""</td>
<td>amine, RR'CHNHR""</td>
</tr>
<tr>
<td>amide, RC(O)NR'₂</td>
<td>amine, RCH₂NR'₂</td>
</tr>
<tr>
<td>nitrile, RCN</td>
<td>imine, RHCNH</td>
</tr>
<tr>
<td>nitro, RNO₂</td>
<td>amine, RNH₂</td>
</tr>
</tbody>
</table>

Activity is important but SELECTIVITY is mandatory
Tools

Multiscale modeling framework for catalytic processes that exhibit strong coupling between scales.
What can we do?

ATOMISTIC
- Predict structure solids

THERMODYNAMICS
- Thermodynamics of processes
- Most-likely configurations under rx

KINETICS
- Reaction paths
- Kinetics processes
- Most-likely configurations under rx

ENGINEERING
- Store and search for data
- Identify structure-activity correlations
- Assess stability
- In-silico Design systems with specific properties
Gold chemistry and hydrogenation

\[\text{C}_3\text{H}_4: \text{H}_2: \text{He} = 5:15:80 \]

0.2 wt.% Pd/Al_2O_3

\[\text{X} \]

\[\text{S(C}_3\text{H}_6) \]

General descriptor thermodynamic selectivity

F. Studt, F. Abild-Pedersen, T. Bligaard, R. Z. Sørensen, C. H. Christensen, J. K. Nørskov
Science, 320 1320 (2008)
Industrial problem: Alkyne hydrogenation

Cracking reactions

Fuel gas
Hydrogen

Steam Cracking or other Olefin Sources

C₂
Selective Hydrogenation

Dimerization
1-Butene

Oligomerization
Alpha-olefins

Metathesis
Ethene

C₃
Selective Hydrogenation

2-Butenes

Propene

Pd (~0.04%)/ δ-Al₂O₃
CO feeding (50-500 ppm)
T ~ 350 K
p ~ 20 bar

S alkenes
over-hydrogenation oligomomerisation
Hydrogenations: the problem
Hydrogenation: Reaction mechanism

C\textsubscript{2}H\textsubscript{2}(g) \rightleftharpoons HC\equiv CH \xrightarrow{H} HC\equiv CH_{2} \xrightarrow{H} \underline{\text{formation}}

\text{CH}_{3}

C

\underline{\text{formation}}

\underline{\text{formation}}

\underline{\text{formation}}

H\equiv CH_{2}

\text{H}_{2}C\equiv CH_{2}

\text{C}_{2}H_{4}(g)

\text{C}_{2}H_{6}(g)

Alkyne hydrogenation: Pd catalyst

Pd (~0.04%)/ Al₂O₃

Experimental evidence

Pretreatment → State of Pd → Sₘₐ𝑙ₗₜₜₜ

Self-consistently analyze composition activity

\[\rho_{H_2}, \rho_{C_2H_2}, \rho_{CO}, X, S_{alkenes} \]
Hydride formation

β-Hydride phase formation: BET equivalence

- The adsorption takes place on a lattice
- First adsorbate layer is adsorbed on the solid surface
- Second adsorbate layer is adsorbed on the first
- Adsorption enthalpy first layer and then for other layers

\[
\frac{V_T(H)}{V_{1ML}(H)}
\]
Hydride formation

Pretreatment and State of Pd

$E_{ads} \sim -0.5 \text{ eV/atom}$

$E_{ads} \sim -0.1 \text{ eV/atom}$
Carbide formation

Pretreatment State of Pd

Carbide formation

Pretreatment and State of Pd

Dehydrogenations are lower in energy
C-C splitting lower at steps

Carbide formation

Pretreatment and State of Pd

- Lateral repulsion between C atoms is very large no dense phases PdC$_{0.13}$
- Preferential decoration of corners and steps, due to high formation energies at surfaces
- Near surface carbides, mostly
- Ability to be formed depends on the alkyne-alkene pair

Hydride formation in the presence of carbide

Pretreatment and State of Pd

\[
\frac{V_T(H)}{V_{1\text{ML}}(H)} > 1
\]

1 ML

Carbide prevents hydride formation

<table>
<thead>
<tr>
<th>Pretreatment</th>
<th>H/Pd ratio (± absolute uncertainty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In H₂*</td>
<td>0.75 (0.08)</td>
</tr>
<tr>
<td>In H₂ after hydrogenation events</td>
<td>0.87 (0.09)</td>
</tr>
<tr>
<td>Unselective hydrogenation†</td>
<td>0.92 (0.10)</td>
</tr>
<tr>
<td>Selective hydrogenation 1‡</td>
<td>0.18 (0.06)</td>
</tr>
<tr>
<td>Selective hydrogenation 2§</td>
<td>0.72 (0.10)</td>
</tr>
</tbody>
</table>
Alkyne hydrogenation: Pd catalyst

- **Industrial conditions**
 - Pd (~0.04%)/ δ-Al₂O₃
 - continuous CO feeding (50 < CO < 500 ppm)
 - T ~ 350 K
 - p ~ 20 bar
Role of CO: hydride formation

Pretreatment and State of Pd

- Very dense layers
- \(E_{\text{ads}} \approx -1.43 \text{ eV/atom} \)

 (\(p(2x2)\)-3CO)

CO prevents hydride formation
Reaction paths and kinetic contributions

Horiuti, J. and Polanyi, M.,
Kinetics pure Pd(111)

Pd clean surface

\[E_a (eV) \]

- Ethyne: \[E_{ads} = -2.02 \text{ eV} \]
- Ethene: \[E_{des} = 0.82 \text{ eV} \]
- Ethyl: \[0.74 \]
- Ethylidene: \[0.79 \]
- Ethane: \[0.45 \]

Vinyl

- 0.81
- 0.79

50% vinyl

50% vinyl
Kinetics β-PdH

Experimental evidence

- p_{H_2} pretreatment
- $T = 348K$
- $p = 1$ bar

Pd $/\gamma$-Al$_2$O$_3$

$E_a (eV)$

- $E_{ads} = -0.94$ eV
- $E_{des} = 0.15$ eV

Chemical reactions:

- Ethyne \rightarrow Vinyl
- Ethene \rightarrow Ethylidene
- Ethane \rightarrow Ethane

Graph showing the distribution of ethanes, soligomers, and sethanes.
Kinetics b-PdH

Pd hydride

E_{ads} -0.94 eV

E_a(eV)

E_{des} 0.15 eV

ethyne

0.58

vinyl

0.36

ethene

0.75

ethylidene

0.06

HC-CH_{3}

PdH induces

S_{ethanes}

Experimental evidence

\bullet p_{H_2} pretreatment

\chi

X, S, \%

S_{oligomers}

S_{ethanes}
Kinetics Carbide phase

Carbide induce

$E_a (eV)$

E_{ads} -1.49 eV

0.70

vinyl

0.57

0.69

Carbide induces S_{ethenes}

Experimental evidence

Carbide induces

E_{des}

0.67 eV

pH$_2$, pC$_2$H$_2$

pretreatment

p_{H_2}, $p_{C_2H_2}$

pretreatment

0.89

0.57

0.57

0.69

Sethenes

Soligomers

Sethanes

ethene

HC=CH$_2$

HC-CH$_3$

HC-CH$_3$

H$_2$C-CH$_3$

H$_3$C-CH$_3$

ethyl

ethane

Edes

0.67 eV

Eads

-1.49 eV

Carbide

Ethyne

Ethene

Ethylidene

Ethane

Edes

0.67 eV

0.70

0.57

0.69

0.89

0.57
Kinetics CO phase

- Ethyne (Eads = -1.24 eV)
- Ethene
- Vinyl
- Ethylidene
- Ethyl
- Ethane

$E_a (eV)$
$E_{des} = 0.00 eV$

$0.45, 0.14, 0.23, 0.44, 0.57, 0.20$
Kinetics CO phase

CO

\[\text{Ethyne} \]

\[\text{Vinyl} \]

\[\text{Ethyl} \]

\[\text{Ethylidene} \]

\[\text{Ethane} \]

E_{\text{ads}} \quad -1.24 \text{ eV}

E_{\text{des}} \quad 0.00 \text{ eV}

E_{\text{ads}} \quad 0.45

E_{\text{des}} \quad 0.14

E_{\text{ads}} \quad 0.23

E_{\text{des}} \quad 0.44

E_{\text{des}} \quad 0.57

E_{\text{des}} \quad 0.20

CO induces \(S_{\text{ethenes}} \)

Experimental evidence

- Pretreatment

\[\text{CO} \] induces \(E_{\text{ads}} \) -1.24 eV

\[\text{CO} \] covered

\[\text{H}_2\text{C-CH}_3 \]

\[\text{H}_3\text{C-CH}_3 \]

\[\text{H}_2\text{C-CH}_3 \]

\[\text{HC-CH}_3 \]

\[\text{HC=CH}_2 \]

Experimental data

\[p_{\text{H}_2} \quad p \]

\[p_{\text{C}_2\text{H}_2} \quad p \]
Oligomerization

\[E_a = 1.38 \text{ eV} \]
\[E_a(\text{+CO}) = 1.40 \text{ eV} \]

Reduction of ensembles
Oligomerization

$E_a = 1.38 \text{ eV}$

$E_a(+CO) = 1.40 \text{ eV}$

Reduction of ensembles
Requirements for a good hydrogenation catalyst

1. Thermodynamic selectivity
 Blocks subsequent reactions

2. No active subsurface species
 Blocks overhydrogenation
 Reduces oligomerization

3. Small ensembles

Carbide:
- Fulfills (1-3)
- Labile
- Difficult homogeneously

Hydride:
- Fulfills (1) and (3)

CO phase:
- Fulfills (1-3)
- Robust
- Easily homogeneous
- Overwrites the state of the catalyst

Hydrogenations: Technical solution

- Active metal
- Secondary metal
- Molecular Modifier
Role of co-catalyst

Complex substrates on Pd

1. Thermodynamic selectivity
2. Inability to form active subsurface species
3. Definition of small ensembles
Organic synthesis: Pd Lindlar Catalyst (1952)

Selective for Multifunctionalized Acetylenic molecules (Solvent)

\[
\text{BaSO}_4 + \text{Pd} \rightarrow \text{Pd/BaSO}_4 + \text{Pb(ACO)}_2
\]

95°C

Pb-Pd/BaSO₄ +

Vitamin A (Retinol)

Lindlar Catalyst
Comparison between Pd catalysts

<table>
<thead>
<tr>
<th></th>
<th>Hydrorefining Catalyst</th>
<th>Lindlar Catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Ethyne, propyne</td>
<td>Long chain alkynes</td>
</tr>
<tr>
<td>Medium</td>
<td>Gas phase or liquid phase</td>
<td>Liquid phase</td>
</tr>
<tr>
<td>Pd content</td>
<td>0.01 – 0.05 %</td>
<td>1 – 5 %</td>
</tr>
<tr>
<td>Second metal</td>
<td>Ag, Au, etc.</td>
<td>Pb, Bi, Cu</td>
</tr>
<tr>
<td>Selectivity modifier</td>
<td>CO</td>
<td>Quinoline</td>
</tr>
<tr>
<td>Support</td>
<td>Al₂O₃</td>
<td>CaCO₃, BaSO₄</td>
</tr>
<tr>
<td>Temperature</td>
<td>RT – 350 K</td>
<td>RT</td>
</tr>
<tr>
<td>Solvent</td>
<td>None</td>
<td>Benzene, Toluene, Methanol</td>
</tr>
<tr>
<td>Regioselectivity</td>
<td>---</td>
<td>Cis</td>
</tr>
<tr>
<td>P_H₂</td>
<td>Up to 20 bar</td>
<td>1 – 10 bar</td>
</tr>
<tr>
<td>Operation</td>
<td>Continuous</td>
<td>Batch</td>
</tr>
</tbody>
</table>
Lindlar preparation: I
Lindlar preparation: II

Pb(AcO)_2 at 95ºC

Formation of Pb islands

E_{isl}

Unfavourable
Lindlar preparation: III

Lindlar Tiling

Jujol, Gaudi 1906
Lindlar Tiling

Thermodynamic selectivity

Blocks subsequent reactions
Lindlar Tiling

Inability to form hydride

Achieved by tiles (solvent)
Lindlar Tiling

Definition of small ensembles

Reduces oligomerization

Garcia-Mota et al. TCA 128, 663 (2011)
New generation catalyst: supported colloids

BASF NanoSelect™ technology

metal salt + HHDMA → metal colloid

- Reducing and stabilizing function combined in one reagent
- Hexadecyl(2-hydroxyethyl)-dimethylammonium dihydrogenphosphate

- Water-soluble, air-stable, BASF compound
EP08150726.1-2104
Preparation of ligand-modified catalysts

- NanoSelect™ technology
 - Easy to scale up
 - No centrifugation required
 - Versatile

- Conventional technique
 - Difficult to scale up
 - Low-boiling point compounds
 - Centrifugation required

Witte, Patent NL50039, 2009 • Witte et al., ChemCatChem 5, 582 (2013)
The structure: TEM
Comparison between Pd catalysts

<table>
<thead>
<tr>
<th></th>
<th>Hydrorefining Catalyst</th>
<th>NanoSelect™</th>
<th>Lindlar Catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Ethyne, propyne</td>
<td>Terminal alkynes</td>
<td>Long chain alkynes</td>
</tr>
<tr>
<td>Medium</td>
<td>Gas phase or liquid phase</td>
<td>Liquid phase</td>
<td>Liquid phase</td>
</tr>
<tr>
<td>Pd content</td>
<td>0.01–0.05 %</td>
<td>0.1-0.5%</td>
<td>1 – 5 %</td>
</tr>
<tr>
<td>Second metal</td>
<td>Ag, Au, etc.</td>
<td></td>
<td>Pb, Bi, Cu</td>
</tr>
<tr>
<td>Selectivity modifier</td>
<td>CO</td>
<td>HHDMA</td>
<td>Quinoline</td>
</tr>
<tr>
<td>Support</td>
<td>Al₂O₃</td>
<td>TiS</td>
<td>CaCO₃, BaSO₄</td>
</tr>
<tr>
<td>Temperature</td>
<td>RT – 350 K</td>
<td>RT</td>
<td>RT</td>
</tr>
<tr>
<td>Solvent</td>
<td>None</td>
<td>Benzene, Toluene</td>
<td>Benzene, Toluene, Methanol</td>
</tr>
<tr>
<td>P\textsubscript{H₂}</td>
<td>Up to 20 bar</td>
<td>1 – 10 bar</td>
<td>1 – 10 bar</td>
</tr>
<tr>
<td>Operation</td>
<td>Continuous</td>
<td>Continuous</td>
<td>Batch</td>
</tr>
</tbody>
</table>
State-of-the-art alkyne hydrogenation catalyst BASF

Lindlar Drawbacks:

- Poor metal utilization
- Lead as a modifier

Structure of the ligand-modified catalyst

Cryo-TEM

TGA

ToF-SIMS

31P MAS NMR
The interface structure
Textural and compositional characterization

Palladium

- **0.5 wt.% Pd or Pt HHDMA/C**
- Image with text:
 - 231 m² g⁻¹
 - $D = 17\%$

- **5 wt.% Pd or Pt**
- Image with text:
 - 10 m² g⁻¹
 - $D = 6\%$

Platinum

- **1-4 wt.% Pb/CaCO₃**
- Image with text:
 - 234 m² g⁻¹
 - $D = 49\%$

- **10 nm**
- Image with text:
 - 4 m² g⁻¹
 - $D = 8\%$

Pd-HHDMA in alkyne hydrogenation

1-hexyne hydrogenation

$W_{\text{cat}} = 0.1 \, \text{g}$, $T = 30^\circ \text{C}$, $P = 1 \, \text{bar}$

$F(H_2) = 18-36 \, \text{cm}^3 \, \text{min}^{-1}$

$F(C_6H_{10} + \text{solv.}) = 0.3-3 \, \text{cm}^3 \, \text{min}^{-1}$

Facile -NO₂ adsorption and H₂ activation enhance the activity of Pt-HHDMA

ACS Catal. 2015, 5, 3767
All strategies are based on

Large amount of Pd

Poisoned in some way

Is it possible to use the minimum ensemble without poisoning
mpg-C$_3$N$_4$ support

Angew. Chem., Int. Ed. 2015, doi: 10.1002/anie.201505073R1
Single site hydrogenation catalyst

Active 1-hexyne
Selective
Stable

Angew. Chem., Int. Ed. 2015, doi: 10.1002/anie.201505073R1
Single site hydrogenation catalyst

Active 1-hexyne
- mechanism as homogeneous Pd
- thermodynamic selectivity
- Stable
- low Pd concentration in pores

Angew. Chem., Int. Ed. 2015, doi: 10.1002/anie.201505073R1
Conclusions

• Integration of DFT and experiments is crucial to understand the chemistry

• The strategies in Pd chemistry for hydrogenation are the same independently application

• Reduction of the catalyst to smallest ensemble is possible
Acknowledgements

M. Garcia-Mota
G. Novell-Leruth
C. Vargas-Fuentes
L. Bellarosa
N. Almora-Barrios

Experimental Collaborations

Prof. J. Pérez-Ramírez (ETH)
G. Vilé
CeO$_2$: Oxygen Vacancy formation

CeO$_2$ is able to reversible adsorb O$_2$ in volume

Bulk vacancies more stable than surface ones

Fig. 2. Calculated relationship between ln(y) and ln(PO$_2$) in the CeO$_2$–CeO$_{1.5}$ system at different temperatures, together with the experimental data of [19].
CeO$_2$: STM images localization and islanding

Annealing 900$^\circ$C 5 min

<table>
<thead>
<tr>
<th></th>
<th>RuO$_2$</th>
<th>CeO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl Coverage</td>
<td>↑↑↑↑↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>Mechanism</td>
<td>2D</td>
<td>2D-3D</td>
</tr>
<tr>
<td>Largest E_a</td>
<td>Cl$^$+Cl$^$→Cl$_2$+2*</td>
<td>Cl# +Cl$^$→Cl$_2$+#+</td>
</tr>
<tr>
<td>Key step</td>
<td>O$_2$ adsorption</td>
<td>O$_2$ adsorption</td>
</tr>
</tbody>
</table>
β-Hydride phase formation: BET equivalence

\[H_2^{gas} + 2^* \leftrightarrow 2H^*(1) \]

\[k_{1,H_2} p_{H_2} \Theta_0^2 = k_{-1,H_2} \Theta_1^2 \]

\[H_2^{gas} + 2(1) \leftrightarrow 2H^*(2) \]

\[k_{i,H} p_{H_2} \Theta_i^2 = k_{-i,H} \Theta_i^2 \]

\[H_2^{gas} + 2(i-1) \leftrightarrow 2H^*(i) \]

\[V = V_0 \sum_{i=0}^{\infty} i \Theta_i \]

\[A = A_0 \sum_{i=0}^{\infty} \Theta_i \]

\[\frac{V_T(H)}{V_{1ML}(H)} \]
\[\frac{V_T(H)}{V_{1ML}(H)} = \frac{cX}{(1 - X)(1 - X + cX)} \]

\[c = \frac{Y}{X} = \left(\frac{K_1}{K_2} \right)^{\frac{1}{2}} \]

\[Y = \left(\frac{K_{1,H_2}}{p_{H_2}} \right)^{\frac{1}{2}} \quad K_1(T) = \exp\left(\frac{-\Delta G_1^0}{k_BT} \right) \]

\[X = \left(\frac{K_{2,H_2}}{p_{H_2}} \right)^{\frac{1}{2}} \quad K_2(T) = \exp\left(\frac{-\Delta G_2^0}{k_BT} \right) \]

\[\frac{V_T(H)}{V_{1ML}(H)} > 1 \quad \rightarrow \quad \text{Hydride Pd} \]
Role of the molecular modifier

Continuous CO feeding (50 < CO < 500 ppm)

Reaction paths: Thermodynamic factor

Activation and reaction energies are linked by a BEP-like relationship.

BEP-relationships

![Graph showing activation energies vs. reaction energies for different compounds](image)
Activity of Colloidal Pd, Pt nanoparticles
Cu can be attractive under some conditions but … requires higher T and generates more oligomers

Carbide exclusion area

Pretreatment and State of Pd

• Large exclusion areas around C species